Application Note, V1.1, Jan. 2004

i «.l\. -\..\:_“
- A |:>

 XC166

,?‘F'I“ash onithe- FIy

Filigy

Microcontrollers

—

. L)
(Infineon
technologies

Never stop thinking.

XC166

Revision History: 2004-01 V1.1
Previous Version: -

Page Subjects (major changes since last revision)

6 Table moved to appendix, as only valid for AC material

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com

Edition 2004-01

Published by
Infineon Technologies AG
81726 Miinchen, Germany

© Infineon Technologies AG 2006.
All Rights Reserved.

LEGAL DISCLAIMER

THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE
IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE
REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR
QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION
NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON
TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND
(INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN
IN THIS APPLICATION NOTE.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.

L o

H AP16048
!Ehf!poegoﬂ) Flash-on-the-Fly

Table of Contents Page
INEFOAUCHION ...t e e e e e 4

. FOIrEWOIAttt e e e e et e e e e e e e nneee 4
1.2 SO OVEIVIEW. ...ttt e e e e e e e e e e e nnnneeeaaaean 4
2 The On-chip CAN BoOtIoader...........occuuiiiiiiee e 5
3 Flash-on-the-Fly as @ CONCEPL.........covveiiiiiiiiiiiie e 7
4 Functional Specificationcc.uueiiiiiiiiii e 8
41 FIash ROULINESoooiiie e 8
411 Read SeqUENCE ErTOr........cuiiiiiiiii et 8
4.1.2 Erase SECHON 8
41.3 Program Page BUFferueiiiiiiiieee e 8
414 Read BUSY flag.......cuiiiiiiiiiiieeeee e 9
4.2 CAN ROULINES ..ttt s e e sneee s 9
421 INIE CAN Lt e e et e e et e e e e e e e e e e ne e e e nnes 9
422 FIFO buffer full interrupt ... 9
423 Last message iNterrupt..........ooiiiiiiiiii e 9
4.3 (1T o= | SRR 10
4.3.1 (753 = o OSSPSR 10
4.3.2 Main FUNCHON.......eiiiie e 10
5 APPENAIX ..t 11
5.1 XCTBX-TOFF AC STEP .eieeiiiiie et 11
5.2 Baudrate Detectionooo e 11
5.3 RS T0 1] (oI 07 oo [SR 11

Application Note 3 V1.1, 2004-01

o
H AP16048
L[!!!'Joegoﬂ) Flash-on-the-Fly

1 Introduction

11 Foreword

Manufacturers of automotive Electronic Control Units (ECUs) have the requirement to
program microcontrollers at the end of the manufacturing process rather than
programming the microcontroller before soldering. In some instances, the vehicle
manufacturers need to perform a final programming sequence once the ECU is fitted
into the vehicle.

In this paper, the possibility of such a concept is presented.

1.2 Short Overview

End-of-line programming: The end-of-line programming is supported by the on-chip
CAN-bootloader. Using this bootloader, the programming device can send a routine to
the microcontroller’s internal Program RAM (PRAM). This routine itself can program
the Flash. The basic ideas of such a program are given in this application note.

Flash-on-the-Fly: A concept to reprogram the Flash without storing additional
information in PRAM.

Application Note 4 V1.1, 2004-01

o
H AP16048
L[!!!'Joegoﬂ) Flash-on-the-Fly

2 The On-chip CAN Bootloader

There are two ways to start the on-chip CAN bootloader, depending on the state of the
/EA input. If /EA is high (internal start) then the configuration should be as follows:

(/EA = 1), /RD = 0 and ALE = 1

This configuration optimizes the configuration for internal memory and does not
consider the PORTO configuration. However, if /EA is low (external start), then the on-
chip bootloader is started by a PORTO configuration as follows:

(/EA = 0), SMOD = (1001)s (note: SMOD pins are POL.5..2)

The bootloader waits for a message to be sent by the programmer. As soon as this
message is sent, the bootloader tries to synchronize to the bus baud rate. This
message should have its sample point set to 80%.

The 11-bit identifier should be chosen as 0x555, as this identifier changes the bus
level every bit time. The format of the message shall be as follows:

Data Length Code =5

Data Byte 0 = BTR Low

Data byte 1 = BTR High

Data byte 2 = ACK ID Low

Data byte 3 = ACK ID High

Data byte 4 = the number of messages to receive.
Where:

BTR is the value of the Node A bit timing register needed to set the baud rate
to the value that should be used after the first contact. This mechanism allows
the TwinCAN to switch to a higher baud rate following synchronization.

ACK ID (acknowledge ID) is the identifier of the handshake message that will
be sent from the microcontroller after synchronization

The last data byte (number of messages) gives the number of messages that
will be stored in PRAM before the boot loader automatically runs the
downloaded code from PRAM.

As soon as the device to be programmed receives the first message, it calculates the
baud rate by measuring bit times. When the baud rate is detected, the device
acknowledges the message sent by the programmer (drives an active bit in the
acknowledge bit slot). The device then sends a handshake message to the
programmer at the baud rate defined by the BTR values received in the initial message

Application Note 5 V1.1, 2004-01

o
H AP16048
L[!!!'Joegoﬂ) Flash-on-the-Fly

from the programmer. The device is then ready to receive the specified number of
messages. The messages have to be pure code, no addressing, as the program is
downloaded one message after another to PRAM. After receiving the defined number
of messages a Watchdog reset takes places and the code in PRAM starts running.

It is recommended that the first instruction downloaded into the PRAM is a DISWDT
instruction to prevent watchdog timeouts resetting the device.

The data bytes contained within the next CAN frames sent (number defined in the first
CAN message as described above) are stored into the internal PRAM, starting at
address 0xE0’0000. For maximum efficiency, the data should be sent in groups of 8
bytes as per the maximum allowed per CAN frame.

Application Note 6 V1.1, 2004-01

o
H AP16048
IIc[::Ilfr!Io.loegocl!) Flash-on-the-Fly

3 Flash-on-the-Fly as a Concept

Flash-on-the-Fly itself shall include the program in PRAM with erase routines, program
routines, initialization routines for the CAN module and two small interrupts. Those
interrupts shall serve the CAN messages of the master program. Given a short
overview of the concept:

Master CAN Slave
Bootloader in PRAM
Master, sending information via CAN with Flash program
Receive object for ready signal via CAN setup (16 MO FIFO)
Transmit Object for Flash program Including a message object for next
Transmit Object for last message signal message block and last message.

Interrupt routine: FIFO buffer full
Last message interrupt

If not last
message

Acknowledge ready to receive

Start sending messages If not last message: 16 message object
o FIFO full interrupt
If last message: Awaited number of
messages
Start programming page
Increment program counter

last message

Y
Change VECSEG to Flash
0CO0'0000h
Reset

Figure 1 Basic concept of Flash-on-the-Fly

Application Note 7 V1.1, 2004-01

o
H AP16048
L[!!!'Joegoﬂ) Flash-on-the-Fly

4 Functional Specification

The functional specification is divided into 3 parts:

1) Flash routines
2) CAN routines and interrupts
3) General e.g. stacks

41 Flash Routines

To get a working environment, the following routines have to be inside this code:

1) read sequence error

2) erase sector

3) program page buffer (AC step and higher routines)
4) read Busy flag

Read sequence error, gives the possibility to detect an error during erasing or
programming. Erase sector, erases the sector up from the start address. Program
page buffer, programs a page. Read Busy flag polls the busy as long as the current
sequence is active.

411 Read Sequence Error

Declaration: int Read_sequence_error(void)

Input: nothing

Output: Error (1) or no error (0).

Usage: Tests if sequence error occurred or not.

41.2 Erase Sector

Declaration: int Erase_sector(unsigned long int sector)
Input: unsigned long int sector: Sector start address
Output: Error (1) or no error (0).

Usage: Erase a sector.

41.3 Program Page Buffer

Declaration: void Program_page_buffer(void)
Input: none

Output: none

Usage: Program page

Application Note 8 V1.1, 2004-01

o
H AP16048
L[!!!'Joegoﬂ) Flash-on-the-Fly

41.4 Read Busy flag

Declaration: void Read_Busy_flag(void)
Input: none

Output: none

Usage: Poll the busy flag until it is reset
4.2 CAN Routines

To get the CAN functionality into this program, the following functions are needed
1) Init CAN

2) FIFO buffer full interrupt

3) Last MO interrupt

Init CAN gives the basic CAN initialization for a working protocol environment. The
FIFO buffer full interrupt shall get the data out of the message objects, program this
data into the page buffer and program the page. The last message interrupt, does
actually the same as FIFO full interrupt, but it reacts without waiting on the buffer full
event and changes the VECSEG to 0xCO as well as it performs a software reset.

4.21 Init CAN
Declaration: void Init_CAN(void)

Input: none
Output: none
Usage: Initialize the CAN as well as the corresponding interrupts.

4.2.2 FIFO buffer full interrupt

Declaration: void interrupt (CANSRC_0_IntNo) FIFO_full(void)
Input: none

Output: none

Level: Level 5 Group 0

Usage: Get data to Flash. Send receive ready signal
4.2.3 Last message interrupt

Declaration: void interrupt (CANSRC_1_IntNo) Last_message(void)
Input: none

Output: none
Level: Level 6 Group 0
Usage: Get data to Flash and reset.

Application Note 9 V1.1, 2004-01

o
H AP16048
L[!!!'Joegoﬂ) Flash-on-the-Fly

4.3 General

To have a complete system the following functions are required:

Cstart.asm: Configure to internal start, define the stacks.

Main: Configure CAN and enable interrupts.

4.31 Cstart

Declaration: own file

Input: none

Output: none

Usage: Configure for internal start and define user and program stack

4.3.2 Main Function

Declaration: void main(void)

Input: none

Output: none

Usage: Configure CAN and enable interrupts

Application Note 10 V1.1, 2004-01

L o

H AP16048
!cr! hf! [Ioegocl!) Flash-on-the-Fly

5 Appendix

5.1 XC16x-16FF AC step

Table 1 CAN Data Byte Mapping

Data Byte 1 2 3 4 5 6 7 8
Offset 2 3 0 1 6 7 4 5

For other devices afterwards, no data exchange is needed.

5.2 Baudrate Detection

In case a mechanism for the baudrate detection is needed, the following algorithm can
be used:

1. Use timer to calculate the baudrate. (The length of one bittime corresponds to the
baudrate)

2. Baudrate detected? Yes, goto 3 else goto 1

3. Switch on Analyzer mode

4.If two times LEC = 3, then switch off Analyzer Mode and start operation, else if
LEC = 3 in n loops, then go back to 1.

5.3 Source Code
//**
/1 Fl ash-on-the-Fly

/1

/1 A sanple programto programthe Flash via CAN

/'l To get the conplete | oader, pogram Master-CAN has to be used, as it
/1 gives the possibility to use the CAN bootl| oader.

/1 Runs at 16 Mhz (O herw se change baudrate)

// Baudrate: 100kBaud

/1 Node chosen: A

/1 Code tested on 128k Device

/1 Runs up from XCl6x-16FF AC

/1

/'l Oiginator: Al MC VA TM

/1 Version: 1.0
/1 March 2003
I/

//**
#i ncl ude "xcl64cs_CAN. h"

Application Note 11 V1.1, 2004-01

AP16048
Flash-on-the-Fly

Infineon

technologies

#i ncl ude "regxcl64cs. h"

#define FALSE 1

#define K 0

#define BTR Ox168F //100kBaud bei 16Nhz
#define CANSRC O_I nt No 0x54

#define CANSRC 1 | ntNo 0x55

#define val ue_CAN 0l C 0x54

#define val ue_CAN 1l C 0x58

unsi gned |l ong int Page=0;

[] KKK kK ok ok ok kK ok ok ok ok kK K ok kR Rk Rk kR Rk Rk kR Rk Rk R R Rk Rk R R Rk kR ok R R Rk kR ok Rk K

/' @-unction voi d read_FSR _Busy(voi d)

e R LR T T T
/] @escription This function read FSR Regi ster

e LR T TR

/1 @Returnval ue none
//**
voi d Read_FSR_Busy(voi d)
{

unsigned int far *Flash_Register = (unsigned int far *) OxFFFOOO;

unsi gned int Register;

Regi ster = *Fl ash_Regi ster;
whi | e(Regi ster & 0x0001)

Regi ster = *Fl ash_Regi ster;
//**
/'l @unction int read_sequence_error(void)
I

/1 @Returnval ue Error yes/no

[]k Kk kK sk ok ko kK ok ok ok ke ko Kk ks kR R ok Rk kR Rk Rk kR Rk Rk Rk kR ok R R R Rk Rk kR Rk kR ok R kK

i nt Read_sequence_error(void)

{
unsigned int far *Flash_Register = (unsigned int far *) OxFFFOOO;
unsi gned i nt Register;
Regi ster = *Fl ash_Regi ster;

i f (Regi ster & 0x0040)
{

}

return(FALSE);

Application Note 12 V1.1, 2004-01

AP16048
Flash-on-the-Fly

Infineon

technologies

el se

return(oK) ;
}
//**
/'l @-unction int Erase_sector (unsigned long int sector)
e L LR T TR T T
/] @escription This function erases one sector
e LR T TR
/'l @Par aneter Sector start address
L R LR T T
/1 @Returnval ue Success
R LR R T T T
/| @Paraneters any constant or register val ue

[] R KK kK ok ok ke kK Kk R ok kR Rk Rk kR Rk Rk R R Rk Rk R R R Rk Rk R R R Rk Rk R R R Rk Rk R R Rk kR kR kK

int Erase_sector (unsigned long int sector)

{
unsigned int far *Flash_Command_1 = (unsigned int far *) OxO0cOOOAA;
unsigned int far *Flash_Command_2 = (unsigned int far *) 0x0c00054;
unsi gned int far *Fl ash_Conmand_3 = (unsigned int far *) sector;

/ / command sequence

*Fl ash_Conmand_1 = 0x0080;
*Fl ash_Conmand_2 = O0x00AA;
*Fl ash_Conmand_3 = 0x0033;

Read_FSR Busy();
return (Read_sequence_error());

}
//**
/'l @-unction voi d Program page_buffer (void)
e LR R
/'l @escription This function prograns one page using

/1 the contents of the 16 message object

/1 FIFO, starting at MXO

R R R T T
/1l @Returnval ue none
e L
/| @Paraneters none
e L
/1 @ate

//**
voi d Program page_buffer (void)

{
unsi gned i nt MO _no=0;
unsi gned int val ue;

Application Note 13 V1.1, 2004-01

AP16048
Flash-on-the-Fly

technologies

unsigned int far *Flash = (unsigned int far *) 0xOcO00AA,
unsigned int far *Load_Page = (unsigned int far *) 0x0cOO0F2;
unsigned int far *Wite_Page = (unsigned int far *) 0x0cOOO5A;
unsigned int far *Page_destination = (unsigned int far *) Page;
unsigned int far *CAN_MO = (unsigned int far *) 0x200300;

/l enter page node
*Fl ash = 0x0050;
*Page_destination = Ox00AA;

/1 load buffer...
while (MO _no <= 0x100)

{
for (value=0; val ue<4;val ue++)
{
*Load_Page = CAN_MJ MO _no+val ue];
}
MO_no+=0x10;
}

Page += (sizeof(char) * 128);
/'l write page

*Fl ash = 0x00AOQ; /'l PA
*Wite_Page = Ox00AA;

Read_FSR Busy();
}

[] KKKk ok ok ok ok kK ok ok ok kK K ok kK R R ok Rk kR Rk Rk kR Rk Rk Rk ok Rk kR Rk kR ok R R Rk kR ok Rk K

/' @-unction int CAN_vlnit(unsigned long int ID receive,

/1 unsigned long int | D ACK,

I unsigned long int ID_|ast)
L LR T T PR
/'l @escription This function initilizes the CAN according

I to the proposed protocol.
R
/'l @Returnvalue Success
I
/1l @paraneters Identifiers

//**

int CAN_vlnit(unsigned long int |1D receive,
unsi gned long int | D _ACK
unsigned long int ID |ast)

{

unsi gned int between;

Pl SEL=0x80;

Application Note 14 V1.1, 2004-01

technologies

AP16048
Flash-on-the-Fly

ACR=0x41,; /] Basic settings
ABTRL=BTR;

Al MRHO=0x1;

Al MRLO=0x8000;

Al MR4=0x2;

DP4=0x40;
ALTSELOP4=0x40;

bet ween=((unsi gned int)I D receive)<<2; /1 Convert
/1 Wite to arbitration register val ue between.
#pragme asm (@vl=bet ween, @, @3, @4) // MO O - 15
MOV @2, #00h ;. @\ = counter
MoV @3, #030ah ; @w3: base address
MoV @w, #080h ; @4 DPP
| abel 1:

EXTP @4, #01h

MV [@B], @1

ADD @3, #20h

CWIl @R, #0fh

JWPR cc_SLT, | abel 1
#pragma endasm

MBGARHL16=I D_| ast <<2;
MSGARHL 7=l D_ACK<<2;

/I For MDO to 17 CAN_ MO CTR[i]=0x5595;
#pragma asm(@vl, @2, @\3, @Y, @\5)

MoV @, #05595h ; val ue
MOV @2, #00h ; counter
MOV @3, #310h ; base address
MoV @w, #80h
| abel 2:

EXTP @4, #01h

MoV [@B], @1

ADD @3, #20h

CWPI1l @R, #11h

JMPR cc_SLT, | abel 2
#pragma endasm

MBGCTRL15=0x5599;
MSGCTRL16=0x5599;

VBGFGCRLO=0xf ;
VBGFGCRHO=0x200;

Application Note 15

IDto register

V1.1, 2004-01

AP16048
Flash-on-the-Fly

technologies

/1 For MO 1 to 15 CAN_MO MBGFGCR]i]=(unsigned | ong int)0x0300000f;
#pragma asm (@1, @2, @3, @4, @\b)

MOV @wl, #338h ; base address

MOV @2, #0 ; counter

MV @, #300h ; H gh word

MOV @4, #0fh ; Low word

MOV @b, #80h ; DPP

| abel 3:

EXTP @b, #02h

MoV [@v1+#02H] , @3

MoV [Gv], @4

ADD @i, #020h

VPl 1 @, #0f h

JWPR cc_SLT, | abel 3
#pragnma endasm

MSGCFGEL17=0x88;
MSGCFGH16=0x1;
/1 all others 0x0

ACR=0; // Stop init

MSGDRL170=0x5555;
MBGDRH170=0x5555;
MSGDRL174=0x5555;
MB5GDRH174=0x5555;

CAN_0I C=val ue_CAN 0I C;
CAN_1I C=val ue_CAN_1I G

return(l);

}

void interrupt (CANSRC O_IntNo) FIFO full(void)
{

/1 for (i=0; i<0xFO;i+=0x10) // Shut of MO
/1 {

/1 CAN_MO CTR[i] =0x5555;

/1 }

#pragma asm(@vl, @2, @\3, @Y, @\5)

MoV @1, #05555h ; val ue
MOV @2, #00h ; counter
MOV @3, #310h ; base address
MoV @w, #80h
| abel 7:

Application Note 16 V1.1, 2004-01

AP16048
Flash-on-the-Fly

EXTP @4, #01h

MoV [@B], @1

ADD @R, #20h

CWIl @R, #0fh

JWPR cc_SLT, | abel 7
#pragma endasm

Program page_buffer(); // Program page to page pointer
/1 for (i=0; i<0xFO;i+=0x10)

I {

/1 CAN_MO Dat a0O[i] =0x00000000;

/1 CAN_MO Dat a4[i] =0x00000000;

1}

#pragme asnm @, @2, @3, @4, @\5) // Delete Data

MOV @vi, #00h ; val ue
MoV @2, #00h ; counter
MOV @3, #300h ; base address
MoV @w, #80h
| abel 8:

EXTP @w, #04h

MV [@W], @1

MoV [@B+#02h] , @v1

MOV [@B+#04h] , @l

MOV [@B+#06h] , @Gl

ADD @3, #20h

CwPI 1 @2, #10h

JWPR cc_SLT, | abel 8
#pragnma endasm

/1 for (i=0; i<0xFO;i+=0x10)

I {

/1 CAN_MO _CTR[i] =0x5599;

/1 '}

/1 For MO O to 16 CAN MO CTR[i]=0x5595;
#pragma asnm(@, @2, @3, @4, @b) // Switch on MO

MOV @i, #05595h ; val ue
MoV @2, #00h ; counter
MOV @3, #310h ; base address
MoV @w, #80h
| abel 9:

EXTP @, #01h

MoV [@W], @1

ADD @3, #20h

CwPI 1 @2, #0f h

JWPR cc_SLT, | abel 9
#pragnma endasm
MSGCTRL15=0x5599;

Application Note 17 V1.1, 2004-01

AP16048
Flash-on-the-Fly

technologies

MBGCTRL16=0x5599;
MBGCTRL17=0xe7f f ;

}

void interrupt (CANSRC 1_IntNo) Last_nessage(Vvoid)
{ . .
int i;
unsigned long int far
*CAN_MO CTR = (unsigned long int far *) 0x200310;

for (i=0; i<0x110;i+=0x10) // Switch off
{
CAN_MO _CTR[i] =0x5555;

}
Program page_buffer(); // Program

#pragma asm// Change start address to Flash and reset
MOV VECSEG, 0cOh
SRST

#pragma endasm

}

voi d mai n(voi d)
{
DP9 _4=0x1; // Gve alive sign
SDA2=0x1;
whi | e(Erase_sector (0xC00000)); // Erase 128k of Flash
whi | e(Erase_sector (0xC02000));
whi | e(Erase_sect or (0xC04000));
whi | e(Erase_sect or (0xC06000));
whi | e(Erase_sector (0xC08000));
whi | e(Erase_sect or (0xC10000));
Page=0xc00000; // Set start address to begi nning of Flash
CAN_vI ni t (0x123, 0x234, 0x567); // Init CAN
| EN=1; // Enable interrupts
MSGCTRL17=0xe7ff; // G ve ready nessage
SDA2=0x0; // | amrunning ...
whil e(1);

This software has been written in Tasking. If you use Keil you need the keyword
volatile for the Flash_Register, otherwise the FSR register will be read only once.

Application Note 18 V1.1, 2004-01

